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Abstract
We design a new nonparametric method that al-
lows one to estimate the matrix of integrated ker-
nels of a multivariate Hawkes process. This ma-
trix not only encodes the mutual influences of
each node of the process, but also disentangles
the causality relationships between them. Our
approach is the first that leads to an estimation
of this matrix without any parametric modeling
and estimation of the kernels themselves. As a
consequence, it can give an estimation of causal-
ity relationships between nodes (or users), based
on their activity timestamps (on a social network
for instance), without knowing or estimating the
shape of the activities lifetime. For that purpose,
we introduce a moment matching method that fits
the second-order and the third-order integrated
cumulants of the process. A theoretical analysis
allows us to prove that this new estimation tech-
nique is consistent. Moreover, we show on nu-
merical experiments that our approach is indeed
very robust to the shape of the kernels, and gives
appealing results on the MemeTracker database
and on financial order book data.

1. Introduction
In many applications, one needs to deal with data containing
a very large number of irregular timestamped events that are
recorded in continuous time. These events can reflect, for
instance, the activity of users on a social network (Subrah-
manian et al., 2016), high-frequency variations of signals in
finance (Bacry & Muzy, 2014), earthquakes and aftershocks
in geophysics (Ogata, 1998), crime activity (Mohler et al.,
2011) or position of genes in genomics (Reynaud-Bouret
& Schbath, 2010). In this context, multidimensional count-
ing processes based models play a paramount role. Within
this framework, an important task is to recover the mutual
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influence of the nodes, by leveraging on their timestamp
patterns (Gomez-Rodriguez et al., 2013; Farajtabar et al.,
2015; Xu et al., 2016).

Consider a set of nodes I = {1, . . . , d}. For each i ∈ I ,
we observe a set Zi of events, where any τ ∈ Zi labels
the occurrence time of an event related to the activity of i.
The events of all nodes can be represented as a vector of
counting processesN t = [N1

t · · ·Nd
t ]>, where N i

t counts
the number of events of node i until time t ∈ R+, namely
N i
t =

∑
τ∈Zi 1{τ≤t}. The vector of stochastic intensities

λt = [λ1
t · · ·λdt ]> associated with the multivariate counting

processN t is defined as

λit = lim
dt→0

P(N i
t+dt −N i

t = 1|Ft)
dt

for i ∈ I , where the filtration Ft encodes the information
available up to time t. The coordinate λit gives the ex-
pected instantaneous rate of event occurrence at time t for
node i. The vector λt characterizes the distribution ofN t,
see (Daley & Vere-Jones, 2003), and patterns in the events
time-series can be captured by structuring these intensities.

1.1. Hawkes processes

The Hawkes process framework (Hawkes, 1971) corre-
sponds to an autoregressive structure of the intensities in or-
der to capture self-excitation and cross-excitation of nodes,
which is a phenomenon typically observed in social net-
works (Crane & Sornette, 2008). Namely, N t is called a
Hawkes point process if the stochastic intensities can be
written as

λit = µi +

d∑
j=1

∫ t

0

φij(t− t′)dN j
t′ ,

where µi ∈ R+ is an exogenous intensity and φij are posi-
tive, integrable and causal (with support in R+) functions
called kernels encoding the impact of an action by node j
on the activity of node i. Note that when all kernels are zero,
the process is a simple homogeneous multivariate Poisson
process.

1.2. Related works

Most papers use very simple parameterizations of the ker-
nels (Yang & Zha, 2013; Zhou et al., 2013b; Farajtabar
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et al., 2015), they are of the form φij(t) = αijh(t) with
αij ∈ R+ quantifying the intensity of the influence of j on i
and h(t) a (normalized) function that characterizes the time-
profile of this influence and that is shared by all couples of
nodes (i, j) (most often, it is chosen to be either exponential
h(t) = βe−βt or power-law h(t) = βt−(β+1)). This is
highly non-realistic: there is a priori no reason for assuming
that the time-profile of the influence of a node j on a node i
does not depend on the pair (i, j). Moreover, assuming an
exponential shape or a power-law shape for h(t) arbitrarily
imposes an event impact that is always instantly maximal,
and that can only decrease with time, while in practice, there
may exist a latency between an event and its impact.

In order to improve this and have more flexibility on the
shape of the kernels, nonparametric estimation is consid-
ered in (Lewis & Mohler, 2011) and extended to the multi-
dimensional case in (Zhou et al., 2013a). An alternative
method is proposed in (Bacry & Muzy, 2016) where non-
parametric estimation is formulated as a Wiener-Hopf equa-
tion. Another nonparametric strategy considers a decom-
position of kernels on a dictionary of function h1, . . . , hK ,
namely φij(t) =

∑K
k=1 a

ij
k hk(t), where the coefficients

aijk are estimated, see (Hansen et al., 2015; Lemonnier &
Vayatis, 2014) and (Xu et al., 2016), where group-lasso is
used to induce a sparsity pattern on the coefficients aijk that
is shared across k = 1, . . . ,K.

Such methods are heavy when d is large, since they rely
on likelihood maximization or least squares minimization
within an over-parametrized space in order to gain flexibility
on the shape of the kernels. This is problematic, since the
original motivation for the use of Hawkes processes is to
estimate the influence and causality of nodes, the knowl-
edge of the full parametrization of the model being of little
interest by itself.

1.3. Granger Causality

Since the question of a real causality is too complex in gen-
eral, most econometricians agreed on the simpler definition
of Granger causality (Granger, 1969). Its mathematical for-
mulation is a statistical hypothesis test: X causes Y in the
sense of Granger causality if forecasting future values of Y
is more successful while taking X past values into account.
In (Eichler et al., 2016), it is shown that forN t a multivari-
ate Hawkes process, N j

t does not Granger-cause N i
t w.r.t

N t if and only if φij(u) = 0 for u ∈ R+. Since the kernels
take positive values, the latter condition is equivalent to∫∞

0
φij(u)du = 0.

In the following, we’ll refer to learning the kernels’ integrals
as uncovering causality since each integral encodes the
notion of Granger causality, and is also linked to the number
of events directly caused from a node to another node, as
described below at Eq. (2).

1.4. Our contribution: cumulants matching

Our paper solves this problem with a different and more
direct approach. Instead of trying to estimate the kernels φij ,
we focus on the direct estimation of their integrals. Namely,
we want to estimate the matrixG = [gij ] where

gij =

∫ +∞

0

φij(u) du ≥ 0 for 1 ≤ i, j ≤ d. (1)

From the definition of Hawkes process as a Poisson cluster
process (Jovanović et al., 2015), gij can be simply inter-
preted as the average total number of events of node i whose
direct ancestor is a given event of node j (by direct we mean
that interactions mediated by any other intermediate event
are not counted). In that respect,G not only describes the
mutual influences between nodes, but it also quantifies their
direct causal relationships. Namely, introducing the count-
ing function N i←j

t that counts the number of events of i
whose direct ancestor is an event of j, we know from (Bacry
et al., 2015) that

E[dN i←j
t ] = gijE[dN j

t ] = gijΛjdt, (2)

where we introduced Λi as the intensity expectation, namely
satisfying E[dN i

t ] = Λidt. Note that Λi does not depend on
time by stationarity of N t, which is known to hold under
the stability condition ‖G‖ < 1, where ‖G‖ stands for the
spectral norm ofG. In particular, this condition implies the
non-singularity of Id −G.

The main idea is to estimate the matrix G directly using
a matching cumulants (or moments) method. Indeed the
cumulants write as centered moments, up to the third order.
For higher order, they are computable using the cumulant
generating function. First, we compute an estimation M̂
of some moments M(G), that are uniquely defined by G.
Second, we look for a matrix Ĝ that minimizes the L2 error
‖M(Ĝ)− M̂‖2. This approach turns out to be particularly
robust to the kernel shapes, which is not the case of all pre-
vious approaches for causality recovery with the Hawkes
model. We call this method NPHC (Non Parametric Hawkes
Cumulant), since our approach is of nonparametric nature.
This new approach is confirmed by a theoretical analysis
allowing to prove the consistency of the NPHC estimator, by
using tools from Generalized Method of Moments, see (Hall,
2005), and a technical original proof that is detailed in the
supplementary material. Note that moment and cumulant
matching techniques proved particularly powerful for la-
tent topic models, in particular Latent Dirichlet Allocation,
see (Podosinnikova et al., 2015). Previous works (Da Fon-
seca & Zaatour, 2014; Aït-Sahalia et al., 2010) already used
method of moments with Hawkes processes, but only in a
parametric setting. Our work is the first to consider such
an approach for a nonparametric counting processes frame-
work.
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2. NPHC: The Non Parametric Hawkes
Cumulant method

The simplest moment-based quantitiesM that can be explic-
itly written as a function ofG are the integrated cumulants
of the Hawkes process.

2.1. Integrated cumulants of the Hawkes process

A general formula for these cumulants is provided in (Jo-
vanović et al., 2015) but, as explained below, for the purpose
of our method, we only need to consider cumulants up to the
third order. Given 1 ≤ i, j, k ≤ d, the first three integrated
cumulants of the Hawkes process can be defined as follows
thanks to stationarity:

Λidt = E(dN i
t ) (3)

Cijdt =

∫
τ∈R

(
E(dN i

tdN
j
t+τ )− E(dN i

t )E(dN j
t+τ )

)
(4)

Kijkdt =

∫ ∫
τ,τ ′∈R2

(
E(dN i

tdN
j
t+τdN

k
t+τ ′)

+ 2E(dN i
t )E(dN j

t+τ )E(dNk
t+τ ′)

− E(dN i
tdN

j
t+τ )E(dNk

t+τ ′)

− E(dN i
tdN

k
t+τ ′)E(dN j

t+τ )

− E(dN j
t+τdN

k
t+τ ′)E(dN i

t )
)
,

(5)

where Eq. (3) is the mean intensity of the Hawkes process,
the second-order cumulant (4) refers to the integrated co-
variance density matrix and the third-order cumulant (5)
measures the skewness of N t. Using the Laplace trans-
form (Bacry & Muzy, 2016) or the Poisson cluster process
representation (Jovanović et al., 2015), one can obtain an
explicit relationship between these integrated cumulants and
the matrixG. If one sets

R = (Id −G)−1, (6)

straightforward computations (see Section 5) lead to the
following identities:

Λi =

d∑
m=1

Rimµm (7)

Cij =

d∑
m=1

ΛmRimRjm (8)

Kijk =

d∑
m=1

(RimRjmCkm +RimCjmRkm (9)

+ CimRjmRkm − 2ΛmRimRjmRkm).

Our strategy is to use a convenient subset of Eqs. (3), (4)
and (5) to define M , while we use Eqs. (7), (8) and (9) in

order to construct the operator that maps a candidate matrix
R to the corresponding cumulants M(R). By looking for
R̂ that minimizes R 7→ ‖M(R) − M̂‖2, we obtain, as
illustrated below, good recovery of the ground truth matrix
G using Equation (6).

The simplest case d = 1 has been considered in (Hardiman
& Bouchaud, 2014), where it is shown that one can choose
M = {C11} in order to compute the kernel integral. Eq. (8)
then reduces to a simple second-order equation that has a
unique solution in R (and consequently a unique G) that
accounts for the stability condition (‖G‖ < 1).

Unfortunately, for d > 1, the choice M = {Cij}1≤i≤j≤d is
not sufficient to uniquely determine the kernels integrals. In
fact, the integrated covariance matrix provides d(d+ 1)/2
independent coefficients, while d2 parameters are needed.
It is straightforward to show that the remaining d(d− 1)/2
conditions can be encoded in an orthogonal matrix O, re-
flecting the fact that Eq. (8) is invariant under the change
R→ OR, so that the system is under-determined.

Our approach relies on using the third order cumulant ten-
sor K = [Kijk] which contains (d3 + 3d2 + 2d)/6 > d2

independent coefficients that are sufficient to uniquely fix
the matrix G. This can be justified intuitively as follows:
while the integrated covariance only contains symmetric
information, and is thus unable to provide causal informa-
tion, the skewness given by the third order cumulant in the
estimation procedure can break the symmetry between past
and future so as to uniquely fix G. Thus, our algorithm
consists of selecting d2 third-order cumulant components,
namely M = {Kiij}1≤i,j≤d. In particular, we define the
estimator ofR as R̂ ∈ argminRL(R), where

L(R) = (1− κ)‖Kc(R)− K̂c‖22 + κ‖C(R)− Ĉ‖22,
(10)

where ‖ · ‖2 stands for the Frobenius norm, Kc =
{Kiij}1≤i,j≤d is the matrix obtained by the contraction
of the tensor K to d2 indices, C is the covariance matrix,
while K̂c and Ĉ are their respective estimators, see Equa-
tions (12), (13) below. It is noteworthy that the above mean
square error approach can be seen as a peculiar General-
ized Method of Moments (GMM), see (Hall, 2005). This
framework allows to determine the optimal weighting ma-
trix involved in the loss function, which is a question to be
addressed in an extended version of the present work. In this
work, we use the coefficient κ to scale the two terms, by set-
ting κ = ‖K̂c‖22/(‖K̂c‖22 + ‖Ĉ‖22). Finally the estimator
ofG is straightforwardly obtained as

Ĝ = Id − R̂
−1
,

from the inversion of Eq. (6). Let us mention an important
point: the matrix inversion in the previous formula is not
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the bottleneck of the algorithm. Indeed, its has a complexity
O(d3) which is cheap compared to the computation of the
cumulants when n = maxi |Zi| � d, which is typically
satisfied (see next subsection). Solving the considered prob-
lem on a larger scale, say d � 103, is an open question,
even with state-of-the-art parametric and nonparametric ap-
proaches (Zhou et al., 2013a; Xu et al., 2016; Zhou et al.,
2013b; Bacry & Muzy, 2016), where the number of com-
ponents d in experiments is always around 100 or smaller.
Actually, our approach leads to a much faster algorithm than
the considered state-of-the-art baselines (see Tables 1–4
below).

2.2. Estimation of the integrated cumulants

In this section we present explicit formulas to estimate the
three moment-based quantities listed in the previous section,
namely, Λ, C andK. We first assume there exists H > 0
such that the truncation from (−∞,+∞) to [−H,H] of
the domain of integration of the quantities appearing in
Eqs. (4) and (5), introduces only a small error. In practice,
this amounts to neglecting border effects in the covariance
density and in the skewness density, and it is a good approx-
imation if i) the support of the kernel φij(t) is smaller than
H and ii) the spectral norm ‖G‖ is sufficiently distant from
the critical point ‖G‖ = 1.

In this case, given a realization of a stationary Hawkes
process {N t : t ∈ [0, T ]}, as shown in Section 5, we
can write the estimators of the first three cumulants (3), (4)
and (5) as

Λ̂i =
1

T

∑
τ∈Zi

1 =
N i
T

T
(11)

Ĉij =
1

T

∑
τ∈Zi

(
N j
τ+H −N

j
τ−H − 2HΛ̂j

)
(12)

K̂ijk =
1

T

∑
τ∈Zi

(
N j
τ+H −N

j
τ−H − 2HΛ̂j

)
·
(
Nk
τ+H −Nk

τ−H − 2HΛ̂k
)

− Λ̂i

T

∑
τ∈Zj

∑
τ ′∈Zk

(2H − |τ ′ − τ |)+

+ 4H2Λ̂iΛ̂jΛ̂k.

(13)

Let us mention the following facts.

Bias. While the first cumulant Λ̂i is an unbiased estimator
of Λi, the other estimators Ĉij and K̂ijk introduce
a bias. However, as we will show, in practice this
bias is small and hardly affects numerical estimations
(see Section 3). This is confirmed by our theoretical
analysis, which proves that if H does not grow to fast

compared to T , then these estimated cumulants are
consistent estimators of the theoretical cumulants (see
Subsection 2.5).

Complexity. The computations of all the estimators of the
first, second and third-order cumulants have complex-
ity respectively O(nd), O(nd2) and O(nd3), where
n = maxi |Zi|. However, our algorithm requires a lot
less than that: it computes only d2 third-order terms, of
the form K̂iij , leaving us with onlyO(nd2) operations
to perform.

Symmetry. While the values of Λi, Cij and Kijk are sym-
metric under permutation of the indices, their estima-
tors are generally not symmetric. We have thus chosen
to symmetrize the estimators by averaging their values
over permutations of the indices. Worst case is for the
estimator of Kc, which involves only an extra factor
of 2 in the complexity.

2.3. The NPHC algorithm

The objective to minimize in Equation (10) is non-convex.
More precisely, the loss function is a polynomial of R of
degree 10. However, by replacing Λ and C appearing in
Eq. (4) and (5) with Λ̂ and Ĉ helps us to decrease the de-
gree from 10 to 6, which makes the optimization problem
less difficult. We denote L̃(R) this simpler objective func-
tion, where the expectations of cumulants Λi and Cij have
been replaced with their estimators in the right-hand side
of Eqs. (8) and (9). Thanks to (Choromanska et al., 2015),
we know that the loss function of a typical multilayer neural
network with simple nonlinearities can be expressed as a
polynomial function of the weights in the network, whose
degree is the number of layers. Since the loss function
of NPHC writes as a polynomial of degree 6, we expect
good results using optimization methods designed to train
deep multilayer neural networks. We used AdaGrad (Duchi
et al., 2011), a variant of the Stochastic Gradient Descent
algorithm. It scales the learning rate coordinate-wise us-
ing the online variance of the previous gradients, in order
to captures second-order information. Our problem being
non-convex, the choice of the starting point has a major
effect on the convergence. Here, the key is to notice that the
matricesR that match relation Eq. (8) writesC1/2OL−1/2,
with L = diag(Λ) and O an orthogonal matrix. In our
setting, this algorithm gave nice convergence results for
O = Id. The NPHC method is described schematically in
Algorithm 1.

Even though our main concern is to retrieve the matrix
G, let us notice we can also obtain an estimation of the
baseline intensities’ from Eq. (3): µ̂ = R̂

−1
Λ̂. An

efficient implementation of this algorithm with Tensor-
Flow, see (Abadi et al., 2016), is available on GitHub:
https://github.com/achab/nphc.
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Algorithm 1 Non Parametric Hawkes Cumulant method
Input: N t

Output: Ĝ
1: Estimate Λ̂i, Ĉij , K̂iij from Eqs. (11, 12, 13)
2: Design L̃(R) using the computed estimators.
3: Minimize numerically L̃(R) so as to obtain R̂

4: Return Ĝ = Id − R̂
−1

.

2.4. Complexity of the algorithm

Compared with existing state-of-the-art methods to
estimate the kernel functions, e.g., the ordinary differential
equations-based (ODE) algorithm in (Zhou et al., 2013a),
the Granger Causality-based algorithm in (Xu et al., 2016),
the ADM4 algorithm in (Zhou et al., 2013b), and the
Wiener-Hopf-based algorithm in (Bacry & Muzy, 2016),
our method has a very competitive complexity. This can
be understood by the fact that those methods estimate the
kernel functions, while in NPHC we only estimate their
integrals. Let us recall that d is the number of components
and n = maxi |Zi| � d the maximum number of events on
a single component. Let us recall complexities given in (Xu
et al., 2016) together with other ones. The ODE-based
algorithm is an EM algorithm that parametrizes the kernel
function with M basis functions, each being discretized to
L points. The basis functions are updated after solving M
Euler-Lagrange equations. The complexity of one iteration
of the algorithm is then O(Mn3d2 +ML(nd+ n2)), with
n the maximum number of events and d the dimension.
The Granger Causality-based algorithm is similar to the
previous one, without the update of the basis functions,
that are Gaussian kernels. The complexity per iteration is
O(Mn3d2). The algorithm ADM4 is similar to the two
algorithms above, as EM algorithm as well, with only
one exponential kernel as basis function. The complexity
per iteration is then O(n3d2). The Wiener-Hopf-based
algorithm is not iterative, on the contrary to the previous
ones. It first computes the empirical conditional laws on
many points, and then invert the Wiener-Hopf system,
leading to a O(nd2L + d4L3) computation. Similarly,
our method first computes the integrated cumulants, then
minimize the objective function with Niter iterations, and
invert the resulting matrix R̂ to obtain Ĝ. At the end, the
complexity of the NPHC method is O(nd2 +Niterd

3). This
is summarized in Table 1

2.5. Theoretical guarantee: consistency

The NPHC method can be phrased using the framework of
the Generalized Method of Moments (GMM). GMM is a
generic method for estimating parameters in statistical mod-
els. In order to apply GMM, we have to find a vector-valued

Table 1. Complexity of state-of-the-art methods. NPHC’s com-
plexity is very low since, especially in the regime n � d.

Method Total complexity

ODE (Zhou et al., 2013a) O(NiterM(n3d2 + L(nd+ n2)))
GC (Xu et al., 2016) O(NiterMn3d2)
ADM4 (Zhou et al., 2013b) O(Nitern

3d2)
WH (Bacry & Muzy, 2016) O(nd2L+ d4L3)
NPHC O(nd2 +Niterd

3)

function g(X, θ) of the data, where X is distributed with
respect to a distribution Pθ0 , which satisfies the moment
conditions: E[g(X, θ)] = 0 if and only if θ = θ0, where
θ0 is the “ground truth” value of the parameter. Based on
i.i.d. observed copies x1, . . . , xn of X , the GMM method
minimizes the norm of the empirical mean over n samples,
‖ 1
n

∑n
i=1 g(xi, θ)‖, as a function of θ, to obtain an esti-

mate of θ0. In the theoretical analysis of NPHC, we use
ideas from the consistency proof of the GMM, but the proof
actually relies on very different arguments. Indeed, the inte-
grated cumulants estimators used in NPHC are not unbiased,
as the theory of GMM requires, but asymptotically unbiased.
Moreover, the setting considered here, where data consists
of a single realization {N t} of a Hawkes process strongly
departs from the standard i.i.d setting. Our approach is
therefore based on the GMM idea but the proof is actually
not using the theory of GMM.

Now, we use the subscript T to refer quantities used or
computed when we observe the process on (Nt) on [0, T ],
like the truncation term HT , the estimated integrated co-
variance ĈT , or the estimated kernel norm matrix ĜT . In
the next equation, � stands for the Hadamard product and
�2 stands for the entrywise square of a matrix. We denote
G0 = Id−R−1

0 the true value ofG, and the R2d×d valued
vector functions

g0(R) =

[
C −RLR>

Kc −R�2C> − 2[R� (C −RL)]R>

]
ĝT (R) =

[
ĈT −RL̂TR>

K̂c
T −R

�2(ĈT )> − 2[R� (ĈT −RL̂T )]R>

]

so that L̃T (R) is a weighted squared Frobenius norm of
ĝT (R), and ĝT (R)

P→ g0(R) under the conditions of the
following theorem, where P→ stands for convergence in prob-
ability.
Theorem 2.1 (Consistency of NPHC). Suppose that (Nt)
is observed on R+ and assume that

1. g0(R) = 0 if and only ifR = R0;

2. R ∈ Θ, which is a compact set;

3. the spectral radius of the kernel norm matrix satisfies
‖G0‖ < 1;
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4. HT →∞ and H2
T /T → 0.

Then

ĜT = Id −
(

arg min
R∈Θ
L̃T (R)

)−1
P→ G0.

Remark 1. Assumption 3 is mandatory for stability of the
Hawkes process, and Assumptions 3 and 4 are sufficient to
prove that the estimators of the integrated cumulants defined
in Equations 11, 12 and 13 are asymptotically consistent.
Assumption 2 is a very mild standard technical assumption,
note Θ is compact so that the minima of the considered
functionals of R are reached within Θ. Assumption 1 is
a standard asymptotic moment condition, that allows to
identity parameters from the integrated cumulants.

The proof of the Theorem is given in the supplementary
material.

3. Numerical Experiments
Simulated datasets. We simulated several datasets with
Ogata’s Thinning algorithm (Ogata, 1981) using the open-
source library tick1, each corresponding to a shape of
kernel.

exponential kernel: φ(t) = αβ exp(−βt) (14)

power law kernel: φ(t) = αβγ(1 + βt)−(1+γ) (15)
rectangular kernel: φ(t) = αβ1[0,1/β](t− γ) (16)

The integral of each kernel on its support equals α, 1/β can
be regarded as a characteristic time-scale and γ is the scaling
exponent for the power law distribution and a delay parame-
ter for the rectangular one. We consider a non-symmetric
block-matrix G to show that our method can effectively
uncover causality between the nodes, see Figure 1. The pa-
rameter α take the same constant value on the three blocks,
but we set three very different β0, β1 and β2 from one block
to the other, with ratio βi+1/βi = 10 and β0 = 0.1. The
matrixG has constant entries on the blocks - gij = 1/6 for
dimension 10 and gij = 1/10 for dimension 100 -, and zero
outside, and the number of events is roughly equal to 105

on average over the nodes. We ran the algorithm on three
simulated datasets: a 10-dimensional process with rectan-
gular kernels named Rect10, a 10-dimensional process with
power law kernels named PLaw10 and a 100-dimensional
process with exponential kernels named Exp100.

MemeTracker dataset. We use events of the most active
sites from the MemeTracker dataset2. This dataset contains
the publication times of articles in many websites/blogs

1https://github.com/X-DataInitiative/tick
2https://www.memetracker.org/data.html

from August 2008 to April 2009, and hyperlinks between
posts. We extract the top 100 media sites with the largest
number of documents, with about 7 million of events. We
use the links to trace the flow of information and establish
an estimated ground truth for the matrixG. Indeed, when
an hyperlink j appears in a post in website i, the link j can
be regarded as a direct ancestor of the event. Then, Eq. (2)
shows gij can be estimated by N i←j

T /N j
T = #{links j →

i}/N j
T .

Order book dynamics. We apply our method to financial
data, in order to understand the self and cross-influencing
dynamics of all event types in an order book. An or-
der book is a list of buy and sell orders for a specific
financial instrument, the list being updated in real-time
throughout the day. This model has first been intro-
duced in (Bacry et al., 2016), and models the order book
via the following 8-dimensional point process: Nt =

(P
(a)
t , P

(b)
t , T

(a)
t , T

(b)
t , L

(a)
t , L

(b)
t , C

(a)
t , C

(b)
t ), where P (a)

(resp. P (b)) counts the number of upward (resp. downward)
price moves, T (a) (resp. T (b)) counts the number of market
orders at the ask3 (resp. at the bid) that do not move the
price, L(a) (resp. L(b)) counts the number of limit orders at
the ask4 (resp. at the bid) that do not move the price, and
C(a) (resp. C(b)) counts the number of cancel orders at the
ask5 (resp. at the bid) that do not move the price. The finan-
cial data has been provided by QuantHouse EUROPE/ASIA,
and consists of DAX future contracts between 01/01/2014
and 03/01/2014.

Baselines. We compare NPHC to state-of-the art base-
lines: the ODE-based algorithm (ODE) by (Zhou et al.,
2013a), the Granger Causality-based algorithm (GC) by (Xu
et al., 2016), the ADM4 algorithm (ADM4) by (Zhou et al.,
2013b), and the Wiener-Hopf-based algorithm (WH) by
(Bacry & Muzy, 2016).

Metrics. We evaluate the performance of the proposed
methods using the computing time, the Relative Error

RelErr(A,B) =
1

d2

∑
i,j

|aij − bij |
|aij |

1{aij 6=0}+|bij |1{aij=0}

and the Mean Kendall Rank Correlation

MRankCorr(A,B) =
1

d

d∑
i=1

RankCorr([ai•], [bi•]),

where RankCorr(x, y) = 2
d(d−1) (Nconcordant(x, y) −

Ndiscordant(x, y)) with Nconcordant(x, y) the number of pairs

3i.e. buy orders that are executed and removed from the list
4i.e. buy orders added to the list
5i.e. the number of times a limit order at the ask is cancelled:

in our dataset, almost 95% of limit orders are cancelled before
execution.
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(i, j) satisfying xi > xj and yi > yj or xi < xj and
yi < yj and Ndiscordant(x, y) the number of pairs (i, j)
for which the same condition is not satisfied. Note that
RankCorr score is a value between −1 and 1, represent-
ing rank matching, but can take smaller values (in absolute
value) if the entries of the vectors are not distinct.

Figure 1. Estimated Ĝ via NPHC on DAX order book data.

Table 2. Metrics on Rect10: comparable rank correlation, strong
improvement for relative error and computing time.

Method ODE GC ADM4 WH NPHC

RelErr 0.007 0.15 0.10 0.005 0.001
MRankCorr 0.33 0.02 0.21 0.34 0.34
Time (s) 846 768 709 933 20

Table 3. Metrics on PLaw10: comparable rank correlation, strong
improvement for relative error and computing time.

Method ODE GC ADM4 WH NPHC

RelErr 0.011 0.09 0.053 0.009 0.0048
MRankCorr 0.31 0.26 0.24 0.34 0.33
Time (s) 870 781 717 946 18

Discussion. We perform the ADM4 estimation, with ex-
ponential kernel, by giving the exact value β = β0 of one
block. Let us stress that this helps a lot this baseline, in com-
parison to NPHC where nothing is specified on the shape
of the kernel functions. We used M = 10 basis functions
for both ODE and GC algorithms, and L = 50 quadrature
points for WH. We did not run WH on the 100-dimensional
datasets, for computing time reasons, because its complex-
ity scales with d4. We ran multiprocessed versions of the

Table 4. Metrics on Exp100: comparable rank correlation, strong
improvement for relative error and computing time.

Method ODE GC ADM4 NPHC

RelErr 0.092 0.112 0.079 0.008
MRankCorr 0.032 0.009 0.049 0.041
Time (s) 3215 2950 2411 47

Table 5. Metrics on MemeTracker: strong improvement in relative
error, rank correlation and computing time.

Method ODE GC ADM4 NPHC

RelErr 0.162 0.19 0.092 0.071
MRankCorr 0.07 0.053 0.081 0.095
Time (s) 2944 2780 2217 38

baseline methods on 56 cores, to decrease the computing
time.

Our method consistently performs better than all baselines,
on the three synthetic datasets, on MemeTracker and on
the financial dataset, both in terms of Kendall rank corre-
lation and estimation error. Moreover, we observe that our
algorithm is roughly 50 times faster than all the considered
baselines.

On Rect10, PLaw10 and Exp100 our method gives very
impressive results, despite the fact that it does not uses any
prior shape on the kernel functions, while for instance the
ADM4 baseline do. On these simulated datasets, NPHC
obtains a comparable or slightly better Kendall rank correla-
tion, but improves a lot the relative error.

On MemeTracker, the baseline methods obtain a high rela-
tive error of from 9% to 19% while our method achieves a
relative error of 7% which is a strong improvement. More-
over, NPHC reaches a much better Kendall rank correlation,
which proves that it leads to a much better recovery of the
relative order of estimated influences than all the baselines.
Indeed, it has been shown in (Zhou et al., 2013a) that ker-
nels of MemeTracker data are not exponential, nor power
law. This partly explains why our approach behaves better.

On the financial data, the estimated kernel norm matrix
obtained via NPHC, see Figure 3, gave some interpretable
results (see also (Bacry et al., 2016)):

1. Any 2 × 2 sub-matrix with same kind of inputs (i.e.
Prices changes, Trades, Limits or Cancels) is sym-
metric. This shows empirically that ask and bid have
symmetric roles.

2. The prices are mostly cross-excited, which means that
a price increase is very likely to be followed by a price
decrease, and conversely. This is consistent with the
wavy prices we observe on financial markets.
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3. The market, limit and cancel orders are strongly self-
excited. This can be explained by the persistence of
order flows, and by the splitting of meta-orders into
sequences of smaller orders. Moreover, we observe
that orders impact the price without changing it. For
example, the increase of cancel orders at the bid causes
downward price moves.

4. Conclusion
In this paper, we introduce a simple nonparametric method
(the NPHC algorithm) that leads to a fast and robust estima-
tion of the matrixG of the kernel integrals of a Multivariate
Hawkes process that encodes Granger causality between
nodes. This method relies on the matching of the integrated
order 2 and order 3 empirical cumulants, which represent
the simplest set of global observables containing sufficient
information to recover the matrixG. Since this matrix fully
accounts for the self- and cross- influences of the process
nodes (that can represent agents or users in applications),
our approach can naturally be used to quantify the degree
of endogeneity of a system and to uncover the causality
structure of a network.

By performing numerical experiments involving very dif-
ferent kernel shapes, we show that the baselines, involving
either parametric or non-parametric approaches are very
sensible to model misspecification, do not lead to accurate
estimation, and are numerically expensive, while NPHC
provides fast, robust and reliable results. This is confirmed
on the MemeTracker database, where we show that NPHC
outperforms classical approaches based on EM algorithms
or the Wiener-Hopf equations. Finally, the NPHC algorithm
provided very satisfying results on financial data, that are
consistent with well-known stylized facts in finance.

5. Technical details
5.1. Proof of Equation (8)

We denote ν(z) the matrix

νij(z) = Lz
(
t→

E(dN i
udN

j
u+t)

dudt
− ΛiΛj

)
,

where Lz(f) is the Laplace transform of f , and ψt =∑
n≥1 φ

(?n)
t , where φ(?n)

t refers to the nth auto-convolution
of φt. Then we use the characterization of second-order
statistics, first formulated in (Hawkes, 1971) and fully gen-
eralized in (Bacry & Muzy, 2016),

ν(z) = (Id + L−z(Ψ))L(Id + Lz(Ψ))>,

where Lij = Λiδij with δij the Kronecker symbol. Since
Id + Lz(Ψ) = (Id − Lz(Φ))−1, taking z = 0 in the

previous equation gives

ν(0) = (Id −G)−1L(Id −G>)−1,

C = RLR>,

which gives us the result since the entry (i, j) of the last
equation gives Cij =

∑
m ΛmRimRjm.

5.2. Proof of Equation (9)

We start from (Jovanović et al., 2015), cf. Eqs. (48) to (51),
and group some terms:

Kijk =
∑
m

ΛmRimRjmRkm

+
∑
m

RimRjm
∑
n

ΛnRknL0(ψmn)

+
∑
m

RimRkm
∑
n

ΛnRjnL0(ψmn)

+
∑
m

RjmRkm
∑
n

ΛnRinL0(ψmn).

Using the relations L0(ψmn) = Rmn − δmn and Cij =∑
m ΛmRimRjm, proves Equation (9).

5.3. Integrated cumulants estimators

For H > 0 let us denote ∆HN
i
t = N i

t+H − N i
t−H . Let

us first remark that, if one restricts the integration domain
to (−H,H) in Eqs. (4) and (5), one gets by permuting
integrals and expectations:

Λidt = E(dN i
t )

Cijdt = E
(
dN i

t (∆HN
j
t − 2HΛj)

)
Kijkdt = E

(
dN i

t (∆HN
j
t − 2HΛj)(∆HN

k
t − 2HΛk)

)
− dtΛiE

(
(∆HN

j
t − 2HΛj)(∆HN

k
t − 2HΛk)

)
.

The estimators (11) and (12) are then naturally obtained by
replacing the expectations by their empirical counterparts,
notably

E(dN i
tf(t))

dt
→ 1

T

∑
τ∈Zi

f(τ).

For the estimator (13), we shall also notice that

E((∆HN
j
t − 2HΛj)(∆HN

k
t − 2HΛk))

=

∫ ∫
1[−H,H](t)1[−H,H](t

′)Cjkt−t′dtdt
′

=

∫
(2H − |t|)+Cjkt dt.

We estimate the last integral with the remark above.
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